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Abstract

Data-driven portfolio construction is non-parametric in the sense that it does not impose its objec-
tive on a parametric representation of input paths, such as a variance-covariance matrix, but rather
imposes its objective directly on these paths without having to make assumptions on their under-
lying data generating process (DGP). The advantage is thus that one can optimize on much richer
dynamics than typical DGP assumptions, e.g. Gaussian assumptions behind mean-variance op-
timization. The main disadvantage is that one can seemingly interpret the parameters that gave
rise to the optimal portfolios not that easily anymore, and for instance do sensitivity analysis,
i.e. how will the portfolio change when parameter x or y in- or decreases? This is conducive to
the black box perception of increasingly more data-driven portfolio construction tools. However,
tools from explainable AI such as Shapley values, which are mathematically principled contri-
bution estimators of features to their output, can be used to overcome this issue. We advocate
a novel approach that combines the powerful statistical approach of conditional bootstrapping
with Shapley values that attribute changing optimal portfolio weights to changing market condi-
tions. The empirical usefulness is shown on a US equity portfolio backtest, where the portfolio
manager gets a better insight in his or her portfolio composition and its sensitivity to changing
market conditions.

Keywords: Data-Driven Portfolio Construction, Bootstrapping, Shapley Values
MSC: 91B28, 91B84

1. Introduction

1.1. Problem setting
Data-driven portfolio construction comes down to imposing less to no parametric restrictions

on the behaviour of the investible instruments and their comovements, but rather performing
an optimization on their paths data directly. It is non-parametric in the sense that we do not
assume a data generating process (DGP) that generated these input sample paths, such as the
assumed Gaussianity of mean-variance optimization, or assumed DGP parameters in mean-
variance-skew-kurtosis or higher DGP-moments extensions. We do not rely on a parametric
representation of these input sample path such as a variance-covariance matrix or higher order
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cumulants, but use sample paths as input in our optimization problem. Moreover, the optimiza-
tion tool we propose is also non-parametric in the sense that it does not rely on optimization
hyperparameters like the thresholds in (conditional) value-at-risk (VaR) or expected shortfall
(ES) optimizations.

The advantage of such approaches is that one is more loyal to the actual DGP by not imposing
a restrictive view on the DGP params (such as Gaussianity) and one finds more robust portfolios
as one is not prone to noise- and signal-induced instabilities of parametric models. The disadvan-
tage is that the quantitative finance literature has built a large knowledge on top of these standard
assumptions (such as mean-variance quadratic utility, portfolio betas, related computational con-
siderations etc.) among which the experience to interpret the estimated parameters and leverage
them for sensitivity analysis and model interpretability in general. This is something that is often
claimed to be lost with purely data-driven models.

In the context of portfolio optimization, we want to argue against this common critique of data-
driven optimizers being black boxes. Something as simple as a covariance matrix can be used as
a black box, if one just calibrates it to historical data, plugs it into a linear-quadratic program and
uses the optimal portfolio as some ground truth, without evaluating concentration and stability,
estimation error or shrunk covariance, non-stationarity or autoregressive covariance, and so and
so forth.

In other words, even the value of a seemingly simple model is in the eye of the beholder.
It is true that for a non-parametric model one can not evaluate the impact of the parameters
on the outcome portfolio. E.g. in a mean-variance optimizer one would be interested in the
sensitivity of a return estimate (i.e. a view) on the resulting portfolio in a Black-Litterman-like
way. Alternatively, one would be interested in the impact of a change in volatility estimate (e.g.
empirical versus GARCH or factor models) on the outcome portfolio.

Admittedly, with non-parametric optimization this is far less trivial. However, this paper ar-
gues that one can still investigate the impact of a change in input samples on a change in resulting
portfolio by using a combination of two statistical techniques:

1. A conditional bootstrap procedure (Hinkley [1]): resample historical scenarios with re-
placement and condition them on some variable, e.g. macro indicators.

2. SHAP or Shapley values (Shapley [2], Lundberg and Lee [3]): a mathematically principled
tool of attributing outcome function values to changes in their input based on the principles
of game theory (coalition games).

We argue that a combination of these two established approaches is a relatively easy but
nonetheless powerful technique to help ’white-boxing’ the increasingly more popular data-driven
optimizer techniques.

1.2. Contribution

To the best of our knowledge we are the first to use a combination of bootstrap methods
and Shapley values for enhancing the explainability of portfolio construction methods that are
purely data-driven as per our above definition. Data-driven asset allocations are becoming more
popular in the industry, and the combination of bootstrap and SHAP outlined below is not specific
to the optimization context of min drawdown optimization (e.g. neural network optimization,
reinforcement learning, etc.), hence it could be a useful addition to the general quant or asset
manager’s toolbox.
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1.3. Related literature
The idea of a Shapley value, essentially evaluating the marginal contribution of a feature to a

prediction, is such a universal concept that it is not surprising that since the breakthrough of the
concept in the machine learning literature (Lundberg and Lee [3]) many authors have applied it to
finance. These include Hagan et al. [4], Colini-Baldeschi et al. [5], Shalit [6], [7], [8], Tarashev
et al. [9], Moehle et al. [10], Simonian [11], Babaei et al. [12], Ohana et al. [13], Benhamou
et al. [14] and Kimura et al. [15]. Closest related to this paper is the works of Jaeger et al. [16]
which apply bootstrapped Shapley values for explainable portfolio construction, but they focus
on inverse volatility (IVP), equal risk contribution (ERC) and hierarchical risk parity (HRP),
which are essentially just variance-based portfolio constructors and are as white-box as what
we first labeled the ’traditional’ techniques. They are only data-driven in the sense that HRP
uses single linkage clustering to solve an inverse variance problem on clusters of the original
universe. This still assumes Gaussianity over these clusters. Colini-Baldeschi et al. [5] describe
the SHAP values of holdings to utility of a variance-based utility investor. In a concise but
powerful paper Hagan et al. [4] use SHAP values as alternatives to the greeks (risk sensitivities)
in a derivative portfolio with stochastic volatility dynamics. They first establish (from Colini-
Baldeschi et al. [5]) that for a mean-variance investor the Shapley values are very closely related
to portfolio betas (i.e. the covariance of instrument returns with the portfolio returns divided by
the instrument volatility). Next, they do portfolio VaR and ES attribution to risk factors, but rely
on elliptical assumptions to do so. Shalit [6] first answered the question how much each security
in a portfolio contributes to the risk-reward tradeoff using Shapley value regression, using a
different interpretation of SHAP, namely a local Shapley regression. The latter method will also
be used in this paper. Shalit [8] follows up with generalized risk decomposition with SHAP
and Shalit [7] focuses on systematic risk identification. Similarly Tarashev et al. [9] performs
systematic risk identification with SHAP, but focusing on banks. Moehle et al. [10] offers a more
theoretical treatment with digressions on tax management and factor investing. Kimura et al.
[15] use Shapley values for factor investing as well. Simonian [11] interestingly uses SHAP
for portfolio selection itself, but not for explaining existing optimizer tools. Babaei et al. [12]
use Shapley values to explain traditional Markowitz mean-variance models by observing only its
outcome, without knowing the input parameters (e.g. by observing an unknown strategy returns
and assuming it uses mean-variance optimization). Finally, Ohana et al. [13] and Benhamou et al.
[14] also include macro conditions as features, but for the prediction of regime switches and not
for white-boxing data-driven portfolio construction. There has been no paper that started from a
fundamentally non-parametric (no assumed DGP) and used Shapley values as a demystifier.

1.4. Organization of results
In the next section 2 we discuss data-driven portfolio optimization as optimizers that do not

require a DGP, a parametric specification of sample paths, or hyperparameters, to optimize. As
an example, we use portfolio drawdown optimization, but it should be stressed that the bootstrap
and SHAP approach is general enough to apply to other data-driven optimizers. Next, we discuss
the conditional bootstrap as a specific form of weighted historical simulation that constitutes the
conditional expectation of the risk functional one optimizes for. In section 3 we delve deeper into
the definition of Shapley values, the link with conditional bootstrap and the link with efficient
implementations of local Shapley regression. Section 4 discusses the application and backtest
findings. Data-driven methods offer the possibility to better accommodate the true DGP, be more
predictive in what they try to predict (i.e. have lower out-of-sample error), generate better risk-
adjusted returns, exhibit more stability, have less concentrations. However, they are seemingly
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less interpretable. Therefore, we show in section 3 that by using relatively simple methods one
can still do sensitivity analysis on the portfolio and formulate expectations on how the model is
going to behave when the market conditions change. For these conditions we built a toy model
of the US economy based on FRED data and LASSO regression. Section 5 concludes.
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2. Data-driven portfolio optimization

For an N-dimensional universe of investible instruments, let us denote by w the vector of
portfolio weights wi, i ∈ {1, ...,N}. Further, Σ is the sample variance-covariance matrix of their
historical return timeseries X : [0,T ] −→ RN , where xi,t = si,t/si,t−1 − 1, and S : [0,T ] −→ RN

is the T by N matrix of historical spot prices or index levels. For convenience, let us also write
σ = diag(Σ), where σi corresponds to individual asset i’s volatility. We introduce the minimum
drawdown portfolio in terms of these notations below4.

2.1. Portfolio drawdown optimization

The minimum drawdown portfolio is the solution to the following linear optimization problem:

min
w

E(ξ(w))

s.t. ξt = mt − wSt

mt ≥ mt−1

mt ≥ wSt

wIN = 1
w ≥ 0

(1)

where we minimize the expected drawdown ξ as a function of portfolio weights w. The draw-
down ξ is a non-linear function of the portfolio path Pt = wSt, ξt = max(maxk<t(Pk) − Pt, 0), but
can hence be written as a linear problem by instrument variable mt which denotes the monotonic
growth of the portfolio value mt ≥ wSt. Chekhlov et al. [17] show that the minimum draw-
down measure satisfies the properties of a deviation measure5 and generalizes them to a dynamic
conditional.

Figure 1: Example of ξ, mt and S t for a US Equity index (S&P500)

4The benchmark portfolios - minimum volatility, the market cap weighted index, equal weighting - are introduced in
terms of the above notation in Section 4.2.

5More specifically, (1) non-negativity, (2) insensitivity to a constant shift, (3) positive homogeneity and (4) convexity.
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It is crucial to understand that we do not rely on a parametric representation of S , need no
additional regularity like elliptic assumptions, hence make no assumptions about the DGP un-
derlying S . Moreover, the model does not require any hyperparameters such as VaR or ES
confidence levels.

The focal element of (1) is the expectation E(ξ), which can be taken over time [0,T ] as an
(ergodic) time-integral, or integrated over a (non-ergodic) ensemble of paths. The next section
delves deeper into the difference between the two and the importance of simulation methods.

2.2. Expected portfolio drawdown and the conditional block bootstrap
The standard go-to implementation for the input path space S : [0,T ] −→ RN is to use the

historical price paths [18][19][20]. This makes a few (most often implicit) assumptions: (a) the
scenario length τ is equal to the amount of historical observations T , (b) all historically observed
drawdowns are signal for expected drawdown (i.e. no noise), (c) all possible drawdown states
were ever realized. All three assumptions are problematic.

The true expected drawdown is the probability-weighted drawdown integrated over all possible
drawdown states Ω. Of course, we do not know the probabilities and tend to estimate them from
the historical sample as some time-integrated mean:

E(ξ) =
∫
Ω

ξdp =
1
T

∫ T

0
ξ(Pt)dt (2)

where the time-integrated mean is assumed equal to the true expectation. This is the common
ergodicity assumption linked to assumption (b) and (c)6. This implies that over many repeated
samples j ∈ [0,Ns]:

E(ξ) =
1

Nsτ

∫ Ns

0

∫ τ
0
ξ(Pt, j)dtd j (3)

the two integrals are commutative and equal to (2). This assumption is clearly flawed. By
contrast, the non-ergodic alternative implies that the integrals in Eq. (3) are non-commutative
nor equal to time-integrated mean and Eq. (3) is closer to the true E(ξ). Eq. (3) is essentially
an ensemble mean of many possible scenarios that can be noisy, where the noise is removed by
additional integration.

Further relaxing assumption (a), we naturally arrive at the historical simulation methods pro-
posed in [23][24]. When τ < T , Ns = ⌊T/τ⌋ non-overlapping blocks of data exist and Ns = T − τ
overlapping blocks can be used (e.g. Figure 2):

S = (S 1, S 2, ..., S Ns ) (4)

Moreover, weighted historical simulation can be used:

E(ξ) =
1

Nsτ

∫ Ns

0

∫ τ
0

b jξ(Pt, j)dtd j (5)

Examples, most noteworthy, include:

6Ergodicity is a concept from statistical physics that essentially states that for a system in equilibrium the expectation
over time will equal the ensemble expectation. This is generally not observed in finance and economics (Peters [21]
and Taleb [22]). Processes are just one realization of what could have happened and they never achieve all their possible
states. This questions the use of historical data in general, but unfortunately it is all we have for quantitative optimization.
The implications here are that, in any case, we are advised to take an ensemble average rather than a single time average.
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■ Exponentially-weighted moving average (EWMA): b j is an exponential function of j, giving
higher weight to more recent observations that are considered more relevant today.

■ Volatility-filtered sampling: b j =
σt
σ j

, the historical samples are divided by their historical
volatilities and multiplied with contemporaneous volatility.

■ Conditional sampling: b j = 0 for sequences not satisfying a historical condition (e.g. VIX >
40%, CPI growth > 5%, etc.) and b j = 1 if they do, only including information of historical
episodes considered more relevant today (e.g. market turmoil).

We propose a latter bootstrap procedure where the weight b j is attributed to the resulting
portfolio weights w. A block bootstrapped minimum drawdown problem [23][24] is one where
for a large number of draws R, e.g. R = 1000, we pick a random index j in {1, 2, ...,Ns} and add
S j from Eq. (4) to the problem (1). We do this with replacement, meaning an index j can be
used multiple times (duplicate trajectories), otherwise R would be limited to Ns. The word block
refers to the fact that every S j is of length τ such that individual S t at time t are not assumed i.i.d.

Figure 2: Example of S for τ = 20 < T = 1300, with Ns = 1280 (= T − τ) overlapping blocks for the US Equity index
(S&P500). I.e. multi-scenario drawdown plots for 20 day (+- 1 month) scenarios.
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Figure 3: The evolution of ξ of US Stock market index (Wilshire, left), the LASSO coefficients of the conditions (right)

3. Conditional attribution: portfolio sensitivity to underlying conditionalities

Conditions Ci are economic priors for the model. Like views, they let us generate scenarios
under the prevalent market circumstances, such as contemporaneous volatility, but they also alow
us to vary these exogenous factors and evaluate what that implies for our the generated paths and
the resulting optimal portfolios. Whereas traditional simulation techniques have focused on the
DGP, data-driven optimization does not need assumptions on the DGP and recently machine
learning has even offered tools to approximate a DGP using flexible mappings (such as neural
networks) and has allowed us to shift the focus of the modeling exercise to the economic priors.
It allows one to essentially train a model on historical conditions, while predicting on current
conditions. This also gives one leeway for introducing nowcasting timeseries, such as real-time
macro data or ESG data into the model.

In this paper we will focus on the US market and build a toy model of the US economy, but this
model would be applicable to real-time sentiment, ESG, etc. as well. We collect approximately
100 conditions Ci from the Federal Reserve Economic Data (FRED) database, including credit
and monetary data, interest rates, employment, commodity prices, stress indicators, volatility
indices, and consumer sentiment. Figure 4 gives an overview of the high-level categories. Table
A.2 in Appendix Appendix A gives a list of all the indicators we have considered.

To get a first idea of the most apposite conditions, we look at the total drawdown path of the
total US stock market (Wilshire) and do a LASSO7 regression to select the most relevant (linear)
features. This gives the weights displayed in Table 1. As one would expect, the CBOE volatil-
ity index dominates the other coefficients. Other stress indicators, such as the FED St. Louis
Financial Stress Index [25] and declining Consumer Sentiment as measured by the University
of Michigan [26] contribute significantly to general market drawdown. Moreover, time series of
manufacturing, export, currency and long-term mortgage rate data were found significant. Only
4 factors had a significant negative impact on the historical market drawdown.

The aim of our analysis is to introduce appropriate Ci to our optimization model, such that we
can evaluate E(ξ|Ci) at the current level of Ci (e.g. b j = 1) as well as for our own scenarios of Ci

(e.g. b j = 0, or the other way around).
For instance, given the current level of volatility, what do paths and the optimal portfolio look

like, and which positions are most affected if one gradually increases the volatility to levels seen

7Least Absolute Shrinkage and Selection Operator, a simple linear regression with a L1-norm penalty on the coef-
ficients, https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lasso. We used
10-fold cross-validation to find the optimal penalty hyperparameter.
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Largest positive contributors to ξ Largest negative contributors to ξ
CBOE Volatility Index 0,815680 US Gov’t Securities at All Com. Banks -0,142223
Avg Weekly OT Hours: Manufacturing 0,129751 Long Term Unemployment: 27 WKS -0,043401
Exports to Mexico 0,126585 JPN/USD Currency Exchange Rate -0,029723
Univ. of Michigan: Consumer Sentiment 0,079161 Avg Hourly Earnings: Manufacturing -0,001523
St. Louis Financial Stress Index 0,072814
CNY/USD Currency Exchange Rate 0,068154
CAD/USD Currency Exchange Rate 0,053743
Imports from UK 0,038683
30-yr Conventional Mortgage Rate 0,037272
Effective Federal Funds Rate 0,029571

Table 1: Lasso coefficients of Ci to ξ

during the GFC or the Covid-19-induced March 2020 meltdown? What does one’s portfolio look
like with current market sentiment, and which positions are likely to be first and mostly affected
when sentiment turns sour gradually? This is what we conceptually discuss here and numerically
investigate in the next section.

As a tool to evaluate changing paths and portfolios to changing conditions, we use Shapley
(SHAP) values [3]. Given one set of ncond conditions C = (Ci)i={1,...,ncond}, an optimal portfolio can
be seen as a linear combination w∗n, for n ∈ N, where the weights reflect some contribution (of
risk, return, drawdown) to the optimal portfolio timeseries w∗S .

Given a set of Np condition sets C = (Ck)k={1,...,Np}, each set corresponding to a C that generates
J = ncond sequences S j, each C will thus correspond to a unique portfolio that is optimal over
this subset of sequences, i.e. for each k one has a different portfolio. Now we can see the w∗k as
the output, and evaluate the contribution of each condition Ci in Ck to the optimal portfolio. The
SHAP values to each w∗d can then formally be defined as:

Φi(w∗d) =
∑

S⊂[Ns\{i}]

|S |!(Ns − |S | − 1)!
Ns!

(w∗d(S ∪ {i}) − w∗d(S ))) (6)

This is the SHAP Φi for condition Ci in terms of the resulting optimal weight w∗d.
Intuitively, for the Np optimal portfolios we evaluate all the subsets of S where condition i was

not active (b j = 0) and compare with the optimal portfolios where it was w∗d(S ∪ {i}), or b j = 1.
The average contribution of this condition to the optimal weight thus constitutes the SHAP value.

This allows for visualizations of the conditional optimal portfolios, such as waterfall and
beeswarm plots ([3] and below), that are popular explainable machine learning tools for ap-
plications in deep learning and computer vision. Efficient implementations that rely on local
approximation using linear regression can be found on the original Shap repo page. These are
so-called kernel Shapley values, which is simply a special weighted linear regression to approx-
imate Eq. (6). We do not reiterate the details here but refer the interested reader to Moehle et al.
[10] and Shalit [6].

4. Applications and backtests

4.1. Set-up and data

For a point-in-time DOW universe, we collect 15 years of data from 31th Dec 2007 up until
1st Jan 2023, which includes the 2007-2008 Great Financial Crisis (GFC), and the 2009-2022
bull market (including the 2020 Covid collapse and sharp recovery). In the backtest, portfolios
were rebalanced monthly using a recursive historical window of three years with no look-ahead
biases.
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Figure 4: Macro condition high-level categories

4.2. Benchmark models

We include three simple benchmarks: a minimum variance portfolio, an equally weighted
portfolio and the market cap weighted index (not computed but directly fetched index levels
from the market data provider).

Minimum volatility portfolio. The minimum volatility portfolio is the solution to the following
quadratic optimization problem:

min
w

wΣw′

s.t. wIN = 1
w ≥ 0

(7)

In other words, we pick the portfolio weights that minimize portfolio volatility, subject to
making sure that the weights add up to one and a long-only constraint. Compared to traditional
mean-variance optimization the returns are implicitly assumed to be symmetric, hence dropped
from the objective.

Equally weighted portfolio. The equally weighted portfolio allocates equal proportions to all
the assets in the investible universe:

w = (1/N, ..., 1/N) (8)

The ’1/N’-portfolio minimizes model risk and assumes symmetrical returns, volatilities and cor-
relations.
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4.3. Results and discussion

4.3.1. Equity backtest
We perform an equity backtest over the five year 2017-2022 period. Figures B.11, B.12, B.13,

B.14, 5, 6 and 7 show the results of the backtest. As from portfolio value point of view, Figure
B.11 shows that our data-driven optimizer is on par with the index and an equally weighted port-
folio. However, annual returns (Figure B.12) are much more consistent in up and down years, and
max and mean drawdowns (Figures B.14 and B.13) are substantially reduced. Note that as ex-
pected the minimum drawdown portfolio minimizes the latter. Most remarkably, minimum vari-
ance portfolio does not participate in the recovery after the 2020 Covid-induced downfall while
minimum drawdown explicitly optimizes for recovery. Therefore, the number of days where a
particular drawdown was prevalent (Figure 5) is maybe the most important figure. While a non-
optimized market or equally weighted portfolio has many +25 and +30% drawdowns, this is not
the case for minimum variance and minimum drawdown portfolio. Minimum variance has low
max drawdowns but high moderate drawdowns or mean drawdown because of its slow recov-
ery. Moreover, our data-driven optimizer excels in terms of stability and lack of concentration.
The instability of variance-covariance matrices can be brought back to correlation breakdown,
or episodes where volatility spikes, all correlations go up and the conditioning of a variance-
based problem goes south. The latter means that when the average correlation of a correlation
matrix goes up, its concentration of eigenvalues (condition number) goes up, and consequently
the precision of the inverted covariance matrix goes down. This inverted matrix is required for
solving the problem and determines its statistical accuracy, therefore it is called the precision ma-
trix. Figure 6 plots the turnover (half the sum of absolute values of change in portfolio weights)
of Min Drawdown and Min Variance respectfully, and puts them next to the rolling two-month
volatility, the average correlation of the DOW universe and the condition number of the rolling
two-month correlation matrix. It is clear that on average Min Drawdown is more stable than Min
Variance, and less prone to spikes in the three above-mentioned indicators of so-called correla-
tion breakdown. In terms of concentration Figure 7 shows the maximum weights of the portfolios
and their Herfindahl indices (sum of squared weights). Minimum Variance likes to invest in in-
dividual low variance instruments and takes on positions up to 40% in individual instruments,
while this is less than half for Minimum Drawdown. The effect is even more pronounced in the
Herfindahl index. From these figures one can argue that a minimum drawdown portfolio can be
constituted by combining instruments into a joint low drawdown path, while minimum variance
is often a product of individual low-vol holdings. This concentration clearly has an iteraction
effect with stability: the more extreme the portfolios at one point in time, the more extreme the
rebalance can be at the next. In summary, minimum variance seems to reduce portfolio risk ver-
sus the market cap or equally weighted portfolio in exchange for underperformance, instability
and concentration. The minimum drawdown portfolio seems to resolve these issues in exchange
for non-interpretable optimal portfolio solutions. There is no parametrized version of the input
samples nor hyperparameters, so in order to evaluate the effect of a variable, such as a risk factor
or macro indicator, on the resulting optimal portfolio, one needs to resort to explainable AI. In
the next section we describe the findings for the methodology outlined in Section 3.
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Figure 5: Days in large drawdown

Figure 6: Portfolio instability

Figure 7: Portfolio concentration
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4.3.2. Portfolio explainability

Figure 8: Shapley values for CBOE Volatility index on the optimal minimum drawdown portfolio. Left: beeswarm plot
which indicates the impact on the portfolio weights per instrument and the level of VIX as color. Middle: bar chart which
is the average absolute value of the average impact of VIX on the position (SHAP-value). Right: a decision chart or the
gradual impact on the portfolio weights by increasing/decreasing VIX.

As an illustration we first take the most obvious macro-economic indicator for economic stress:
the CBOE Volatility Index (VIX) indicator.

How sensitive are the positions in our portfolio for a new shock in volatility? Figure 8 gives
an overview of the results: the instruments with a high Shapley value have a high sensitivity to
the VIX assumption. In case the world changes abrubtly, such as a global pandemic or a war,
when the VIX spikes, the asset manager might want to know which of his positions are likely to
be first and most impacted and likely to be bought or sold by the optimizer. Positions with small
or close to zero Shap values are positions that were obtained under any conditional historical
scenario and are thus expected to be robust over new scenarios of market turmoil8. In casu, P&G
and Coca-Cola stock are most sensible to volatility spikes as from the beeswarm plot it is clear
that these positions have the biggest deviations from their unconditional values. As much as 20%
of the position is affected by the VIX condition. Figure 10 shows the full sensitivity analysis.
There it is clear that the delta is approximately 10% for both, with with high VIX meaning higher
positions in Coca-Cola and lower position in P&G, and vice versa. The opposite can be said for
a position like Microsoft or Nike. For both high and low VIX we find similar positions which
are thus relatively insensitive to the VIX condition.

This was just one example that we could reiterate for the 100 features of our toy macro model
of the US economy. We could now build dashboards that explain the sensitivity of one’s current
portfolio to macro factors and the current state of the factors. Figure 9 is a simple example.
On the left we see the current portfolio (i.e. on the final backtest date), on top we find the ten
selected predictors of market drawdown from the LASSO selection. The top rows contain the

8As with the ergodicity assumption, this assumes history tells us something about the future. Unfortunately it is all
we quants have. And why would one use quant methods if these scenarios do not contain information for the future?
In terms of market efficiency, we are not predicting returns but risk, and these sensitivities are essentially drawdown
sensitivities to the market conditions. There might be good economic reasons (this is not in the scope of this paper) as
to why a low drawdown instrument (like a cashcow safe haven) might be a low drawdown instrument again in a future
period of economic distress.
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Figure 9: Macro dashboard

last observed value of these indicators, the value before that, and thus the observed last change.
The remainder of the heatmap are the Shapley values. For instance, we see a decrease in US
long-term unemployment at the end of 2022, where the P&G position is most sensitive to such a
shock. The second to last column contains the CBOE Volatility index Shapley values we know
from Figure 8. We find that the last update was a small decrease in volatility, such that we do not
expect the sensitive Coca-Cola and P&G positions to move much.

Such dashboards could be synchronized with the portfolio manager’s economic calendar such
that s/he can anticipate the effects on the data-driven optimizer beforehand. Moreover, the
changes in conditions should not only be considered a given by the market, but could also be
based on stresstesting values or views by the asset manager, and risk factors and nowcasting
timeseries such as environmental, social, governance and news sentiment data could be included.
Therefore, although the model seemed initially not interpretable, its value lies in the eyes of its
beholder.
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Figure 10: Sensitivity to CBOE Volatility of optimal minimum drawdown portfolio positions
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5. Conclusion

A portfolio manager’s job is mainly to deal with the uncertainty of markets. The stochasticity
of markets is different than e.g. random processes in physics. In physics, if a DGP is unrealistic,
one can add complexity, i.e. more mathematics, to make it more realistic. In finance, extra
complexity often creates more room for error, as there are no theories and only models. Simpler
often means better as long as it is not too simplistic. This has been one of the longstanding under-
or overtones in the quantitative financial literature. Doing exact derivations of optimal allocations
under wrong DGP assumptions has dominated the literature since Markowitz introduced the
mean-variance paradigm as Modern Portfolio Theory in 1952. Therefore, people have focused
on combatting its limitations: specification issues and overfitting, concentration, instability, etc.

Another way of looking at the allocation problem is not focusing on the DGP but doing opti-
mization directly on unparametrized versions of the data, which we called data-driven models.
Data-driven models potentially have the advantage of better accommodating the implicit DGP,
lack of concentration, stability, and more. However, they are often called complex and black
boxes, which does not fit the usual paradigm that, if one deals with a peculiar kind of uncertainty
like financial markets, simpler is better than complex.

This paper essentially uses a combination of very simple and established methods, albeit in
a data-driven way. We propose one specific data-driven optimizer, the minimum drawdown
portfolio which is an objective that is imposed directly on input samples. We discussed the
implications of the conditional expectation of portfolio drawdown for a conditional bootstrap
setup. Next, we were the first to link such a bootstrap procedure conditional on macro economic
data to the resulting optimal portfolio outcomes using the concept of Shapley values. Shapley
values are a universal approach to estimate the contributions of individual features to an outcome
function. Through this technique one can assess the sensitivities of individual positions to shocks
in exogenous macro economic factors. Moreover, one can build holistic dashboards that display
the sensitivities and changes in a host of factors. In addition, one could go from a low-frequency
macro approach into a nowcasting approach with higher frequency proxies of these factors and
also include environmental, social and governance factors or news.

Future work will include this analysis, synchronize our approach with the economic clock and
evaluate whether this could be conducive to more effective asset management. Moreover, assess-
ing the portfolio’s sensitivities to news or ESG data is a popular topic that could be considered
from this angle.
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Appendix A. Macro conditions details
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Table A.2: Macro-economic conditions

ID FRED ID FRED Cat. Detailed Cat. Indicator
0 TREAST Finance Monetary Data US Treasuries Held by the Fed
1 MBST Finance Monetary Data Mortgage Backed Sec Held by the Fed
2 WALCL Banking Monetary Factors All Fed Reserve Banks - Total Assets
3 TLAACBW027SBOG Banking Monetary Factors All Commercial Banks - Total Assets
4 BOPBCA Banking Conditions Number of US Banks
5 USNUM Banking Conditions Number of US Commercial Banks
6 EQTA Banking Conditions Equity/Asset Ratio
7 TOTBKCR Banking Commercial Credit Bank Credit of All Commercial Banks
8 TOTALSEC Banking Commercial Credit Securitized Total Consumer Loans
9 TOTALSL Banking Commercial Credit Total Consumer Credit Outstanding
10 INVEST Banking Investment Total Investments All Commercial Banks
11 USGSEC Banking Investment US Gov’t Securities at All Com. Banks
12 CONSUMER Banking Loans Total Consumer Loans
13 BUSLOANS Banking Loans Total Commercial/Industrial Loans
14 DALLCACBEP Banking Delinquencies Delinquencies On All Loans And Leases
15 T10Y2Y Banking Interest Rates US 10-YR / 2-YR Spread
16 TB3MS Banking Interest Rates 3-Month T-Bill: Secondary Market Rate
17 DGS10 Banking Interest Rates 10-Yr Treasury Const. Maturity Rate
18 GFDEBTN Business/Fiscal Federal Government Federal Government Debt (Public)
19 FYOINT Business/Fiscal Federal Government Interest on National Debt
20 FYONET Business/Fiscal Federal Government Federal Spending
21 FYFR Business/Fiscal Federal Government Federal Receipts
22 FYFSD Business/Fiscal Federal Government Budget Deficit/Surplus
23 CDSP Business/Fiscal Household Sector Consumer Debt/Income Ratio
24 PERMIT Business/Fiscal Household Sector New Home Permits
25 HSN1F Business/Fiscal Household Sector New Home Sales
26 CMDEBT Business/Fiscal Household Sector Outstanding Mortgage Debt
27 DGORDER Business/Fiscal Ind. Production Manufacturers’ New Orders
28 TCU Business/Fiscal Ind. Production Capacity Utilization: Total Industry
29 TTLCONS Business/Fiscal Construction Total Construction Spending
30 BUSINV Business/Fiscal Other Total Business Inventories
31 ALTSALES Business/Fiscal Other Light Weight Vehicle Sales
32 UMCSENT Business/Fiscal Other Univ of Michigan: Consumer Sentiment
33 STLFSI Business/Fiscal Other St. Louis Financial Stress Index
34 OILPRICE Business/Fiscal Other Spot Oil Price - West Texas Intermediate
35 CPIAUCSL Consumer Prices CPI Consumer Price Index: Seasonally Adj.
36 UNRATE Empl & Population Household Survey Civilian Total Unemployment Rate
37 UEMP27OV Empl & Population Household Survey Long Term Unemployment: 27 WKS
38 UEMPMED Empl & Population Household Survey Length of Unemployment
39 CE16OV Empl & Population Household Survey Total US Workforce
40 EMRATIO Empl & Population Household Survey US Employment/Population Ratio
41 POP Empl & Population Population US Population
42 AHEMAN Empl & Population Est. Survey Avg Hourly Earnings: Manufacturing
43 AWHMAN Empl & Population Est. Survey Avg Weekly Hours: Manufacturing
44 AWOTMAN Empl & Population Est. Survey Avg Weekly OT Hours: Manufacturing
45 DEXUSUK Exchange Rates Daily Rates USD/GBP Currency Exchange Rate
46 DEXUSEU Exchange Rates Daily Rates USD/EUR Currency Exchange Rate
47 DEXJPUS Exchange Rates Daily Rates JPN/USD Currency Exchange Rate
48 DEXMXUS Exchange Rates Daily Rates MXP/USD Currency Exchange Rate
49 DEXCAUS Exchange Rates Daily Rates CAD/USD Currency Exchange Rate
50 DEXCHUS Exchange Rates Daily Rates CNY/USD Currency Exchange Rate
51 COMPOUT Financial Data Monetary Commercial Paper Outstanding
52 VIXCLS Financial Data Volatility Indexes CBOE Volatility Index
53 GDP GDP & Components GDP/GNP US Gross Domestic Product
54 GNP GDP & Components GDP/GNP US Gross National Product
55 NETFI GDP & Components Imports & Exports US Current Account Balance
56 EXPGS GDP & Components Imports & Exports US Exports Goods & Services
57 IMPGS GDP & Components Imports & Exports US Imports Goods & Services
58 DGI GDP & Components Govt Accounting Fed Govt: Defense Budget
59 FGRECPT GDP & Components Govt Accounting Fed Govt: Tax Receipts
60 TGDEF GDP & Components Govt Accounting Fed Govt: Budget Deficit
61 CP GDP & Components Industry Corporate Profits After Tax
62 DIVIDEND GDP & Components Industry Corporate Dividends
63 PI GDP & Components Personal Personal Income
64 PSAVE GDP & Components Savings & Inv. Personal Savings
65 PSAVERT GDP & Components Savings & Inv. Personal Savings Rate
66 MORTGAGE30US Interest Rates 30yr Mortgage 30-yr Conventional Mortgage Rate
67 DPCREDIT Interest Rates FRB Rates Discount Rate
68 FEDFUNDS Interest Rates FRB Rates Effective Federal Funds Rate
69 GRCPROINDMISMEI International Data Indicators Production of Total Industry in Greece
70 GRCSARTMISMEI International Data Indicators Total Retail Trade in Greece
71 GRCURHARMMDSMEI International Data Indicators Unemployment Rate - Greece
72 M1 Monetary Aggregates M1 M1 Money Supply
73 M2 Monetary Aggregates M2 M2 Money Supply
74 MZM Monetary Aggregates MZM MZM Money Supply
75 M1V Monetary Aggregates M1 Velocity of M1 Money Stock
76 M2V Monetary Aggregates M2 Velocity of M2 Money Stock
77 MZMV Monetary Aggregates MZM Velocity of MZM Money Stock
78 MULT Monetary Aggregates M1 M1 Money Multiplier
79 PPIACO Producer Prices PPI Producer Price Index: All Commodities
80 IMPCH Trade Imports Imports from China
81 IMPJP Trade Imports Imports from Japan
82 IMPMX Trade Imports Imports from Mexico
83 IMPCA Trade Imports Imports from Canada
84 IMPGE Trade Imports Imports from Germany
85 IMPUK Trade Imports Imports from UK
86 EXPCH Trade Exports Exports to China
87 EXPJP Trade Exports Exports to Japan

Continued on next page
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Table A.2 – continued from previous page
ID FRED ID FRED Cat. Detailed Cat. Indicator

88 EXPMX Trade Exports Exports to Mexico
89 EXPCA Trade Exports Exports to Canada
90 EXPGE Trade Exports Exports to Germany
91 EXPUK Trade Exports Exports to UK
92 BOPGEXP Trade Exports Exports: Goods
93 BOPGIMP Trade Imports Imports: Goods
94 BOPGTB Trade Balance Balance: Goods
95 EXPGS Trade Exports Exports: Services
96 BOPSIMP Trade Imports Imports: Services
97 BOPSTB Trade Balance Balance: Services
98 BOPGSTB Trade Balance Balance: Goods & Services

Appendix B. Backtest figures
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Figure B.11: Portfolio values backtest

Figure B.12: Returns backtest
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Figure B.13: Mean drawdowns backtest

Figure B.14: Max drawdowns backtest
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